
0: Understanding This DOC.

This DOC is for basic documentation of map design and handling of Characters
and items. There is a heavy lack of code as we are only concerned with basic
understanding of the engine. The idea here, is that one with basic understanding of
swift and programing logic should be able to modify the engine with help from this DOC
to create their own text adventure game. More complete documentation for more
experienced programers will be embedded within the code.

1: Creating the map and rooms:
In this engine creating maps and rooms is the most simple process, however the

most crucial of the game, as without any rooms, there is no game. To create a room you
simply need to come up with a description of the room, Let’s create room 1. We will
say that you are in a field surrounded by trees, to the north you can see a small
opening in the forest. To add this we will simply use the library DungeonText:

let DungeonText: [Int:String] = [
1:”You find yourself in a small clearing surround by forest, you see

an opening in the brush to the north”

]

Now whenever the players starts the game they will see that message displayed.
However typing “go north” will not allow the player to transverse in that direction.
Why? Well this is true for two reasons,

1. There is no other room yet.
2. There code does not know what room is north of room 1.

1.1: Better Defining rooms:
To fix this, we need to to create another room and point to witch room is

north. So let’s first make a new room, let’s use 69 because, why not?

let DungeonText: [Int:String] = [
1:”You find yourself in a small clearing surround by forest, you see

an opening in the brush to the north”,
69:”You have made it out of the forest! Thanks for playing!”

]

Great! So now we have another room! However we still cannot transverse to it
because the code still doesn’t define that room 69 is north of room 1. To define
location of rooms we use 4 Libraries:

let whatsNorthOf: [Int:Int] = []
let whatsEastOf: [Int:Int] = []
let whatsSouthOf: [Int:Int] = []
let whatsWestOf: [Int:Int] = []

So in order to define That room 69 is north of room 1. We will need to put 2
Ints in library whatsNorthOf. We place into it roomnumber : RoomThatIsNorthOfThatRoom.
So we will place 1:69 into it, I remember this by saying something like “North of room
1 lies room 69” To help me remember what order the numbers should be in. So our code
will look like this:

let whatsNorthOf: [Int:Int] = [1:69]

So now, when the player types “go North” from room 1, they will enter into
room 69.

1.2: Building Gates for the map:
Often you will find you may want to block paths with guards (see 3.3) or

gates. So of course this engine has this feature baked right in as well.

This is handled with 5 Libraries called

PathBlockedText
NorthIsBlockedOf
EastIsBlockedOf
SouthIsBlockedOf
WestIsBlockedOf

To block a path for say north of room one we will add PathBlockedText with a
message that will show that something is blocking the path. ie:

var PathBlockedText: [Int:String] = [
1:”The path is blocked by a gate numbered is 647.”

]

Then in the appropriate library, in this case it’s NorthIsBlockedOf we will
place the room number followed what item is needed to in order to pass, in this case
will be gate 647.

var NorthIsBlockedOf: [Int:String] = [
1:”key647”

]

This will declare that we need to obtain an item called “key647” in order to
pass through the gate.

2: Creating and placing Items:
Creating, and placing items on the map is quite simple, defining how they act

though is a different story as actual code must be written. But as far as defining,
placing and stowing goes. It’s pretty straight forward without a single line of code
(relatively speaking) needing to be written.

To create a new item, we need to change the array of allItems Let’s say we
want to add a peanut into the game, we will simply add an item by the name of peanut.

let allItems: [String] = ["sand",
 “Peanut”

]
So now, Peanut exists, but we need to do something with it so that we can

fetch it or add it to our inventory later on using something like the pickup command
The way that we do that is by modifying the library itemLocation. This works with a
String:Int base, the String defines what item and the Int defines were the item is at.

Int:
0 — Item is in the players inventory
1-0xFFFFFEFF — Item is on the map in room X waiting to be picked up.
0xFFFFFF01 — Item is being held by a character to be given to the

player.
0xFFFFFFFF - 0xFFFFFFFF — Reserved for future use.

So let us now place the peanuts on the map. This is done as such:

var itemLoction: [String:Int] = [“Peanut”:1]

That code will place the the item on the map in room one, and upon using the
pickup command, it will have it’s status changed to 0 to represent being placed in the
players inventory.

3: Adding a Character:
The text engine has a wide variety of variable to add characters. This can be

achieved with as little as 2 variables or as many as 8 for more complex characters, At
the writing, this makes adding characters the most complex part of the engines code.

 To add a basic character the player can interact with we only have to modify
the libraries OriginChar and CharecterDescription. If we want to say add a character
in room 8, we must decide what we want to character to be. In this example we will use
the old pruny man from ACT I. Add to character description the room number of 8 and
his description like so:

let CharecterDescription: [Int:String] = [
8:”In the center of the room sits a crusty raisin of a man in deep

meditation.”
]

So now when the player steps into room 8 they will be told that there is a
character in it and be aware of his description. But the player will frown once they
try to talk with the man as the man still can not interact. This is were OriginChar
comes into play, this array holds the default message of the Character when the talk
command is used. So we will add the our message text from room 8 like so:

let OriginChar: [Int:String] = [
8:”In order to cross the bridge onto the main land you must take this

broach.”
]

So now when the player uses the talk command they will now see that the
character has something to say. However now they will frown when there is no broach in
they’re inventory.

3.1: Giving players items:

So now we’ve set the stage to give the player an item. Now we need for the old
man to actually give the player the stupid broach. Assuming the item is already in
existence (See chapter 2 for creating and placing items) we can use the library
CharactersToGive to give the player an item.

let CharactersToGive: [Int:String] = [
8:”BroachOFHigs”

]

And with that the character in room 8 will give you the stupid broach when you
talk to him. However, if we talk the old man again, we don’t want him to say the same
thing again. So we must also change CharItemFlag and OptionChar These two work in
tandem to modify characters. These work quite simply, CharItemFlag tells the code that
if the player has a specific item in the inventory to use the alternate text of
OriginChar with OptionChar. So first let’s modify CharItemFlag with the broach.

let CharItemFlag [Int:String] = [
8:”BroachOfHigz”

]

The code above will be compared to the players inventory, if the broach is
found in the inventory then
the code we instead display the text within OptionChar. Using OptionChar is the same
as using OriginChar above.

let OriginChar: [Int:String] = [

8:”Use that broach well my son.”
]

And that will complete the code of the old man. But what if we only want to
give a player an item once a condition is met?

3.2: Giving players items on conditions:

In the case of the old man we give the player a broach, but what about the
crazy gibbering speaking guy outside of the old mans house? He only gives you the
sword once you have picked up the cypher key to translate what he has to say! Well in
this case we have code to handle that as well. To handle this we will need to:

1. Create a default line in OriginChar
2. Set a condition for CharItemFlag for the cypher
3. Set OptionChar as the alternate message.

Now all we need to do is set the library CharactersToGiveIf to give the sword,
CharactersToGiveIf is an optional item prescriber that is automatically checked if
CharItemFlag conditions are met. We will simply set it like:

CharactersToGiveIf: [Int:String] = [
1:“sword”

]

The sword will now be given to the inventory upon the condition in
CharItemFlag being met.

3.3: Characters that block paths.

The engine also contains conditions for characters to block paths. This is not
a function exclusive to characters, rather the function was adapted to characters as
an extension from a variable designed to block paths with like… locked gates and
stuff… So this will basically be a repeat of section 1.2.

This is handled with 5 Libraries called

PathBlockedText
NorthIsBlockedOf
EastIsBlockedOf
SouthIsBlockedOf
WestIsBlockedOf

To block a path for say north of room one we will add PathBlockedText with a
message that will show that something is blocking the path. ie:

var PathBlockedText: [Int:String] = [
1:”A shady figure blocks the path to the north.”

]

Then in the appropriate library, in this case it’s NorthIsBlockedOf we will
place the room number followed what item is needed to in order to pass, be it a key, a
passport… or… How about… The brutalPickOfFuckingDestiny!? Yeah… let’s go with that…

var NorthIsBlockedOf: [Int:String] = [
1:”brutalPickOfFuckingDestiny”

]

This will declare that we need the brutalPickOfFuckingDestiny to get passed
the shady man! Of course players may want to utilize the talk command to talk to these
characters blocking their path, it is recommend that you of course program in hints
into OriginChar.

4: Creating a battle:

At this time in the code there is no defined battle system. so all battles
must still be hard coded. However, this is still some internal battle code. You can
place a battle on the map for when entering a room using using the variable battleMap.

var battleMap: [Int:Bool] = [2:true]

By placing “2:true” in the dictionary you are saying that there is an
undefeated monster in room 2. The Bool will be changed to false whenever the monster
is defeated.

4.1: Setting the battle function:

Battles are handled in by the function doBattle(roomNum: Int) The core code
will read from dictionary battleMap and pass the current room number into the doBattle
function. Your battle code will look need to look something like this.

func doBattle(roomNum: Int)
{

if(roomNum==2)
{

print(“Let the battle begin!”)
}

}

